Automated Vehicle Health Management

(AKA prognostics and Health Management (pHM): An automated complex system health assessment concept that employs a hierarchal artificial intelligence architecture for determining the current state of individual system health and predicting the future state of health of individual systems and the population of systems given a planned operating environment. This health management concept features:

- Automated fault detection
- Automated fault isolation
- Automated fault prediction
- Automated or operator assisted fault accommodation (contingency management)
- Automated fault and prognostic reporting
- Accurate control of Type A and Type B errors
- Elimination of CND and RTOK maintenance actions

System Integration of Prognostics

- Automated System Health Management
 - Get the most out of the individual weapon system through knowledge of direction and magnitude of its health vectors
 - Enable opportunistic Maintenance
 - Maximize efficiency of supply system
- Focus of the current project: Monitoring of individual component material variability and material response to operational use as a means of predicting future mission capability

Health Management Design Optimization

Health Management Fitness Function

Structure of PHM Design Cost Function

For each Failure Mode – FM(i)

Step 1) Probability of Failure * Severity *Consequential Cost of FM(i) +(Downstream Failure Mode Consequential Costs) * Probability of Propagation

Step 2) *HM risk reduction attributed to FM(i)

Step 3) + Cost associated with False Alarms on FM(i)

Step 4) + Total Cost of all HM technology

Step 1 and
$$2 =$$

$$\sum_{FM_{i}}^{FM_{i}} \left\{ \left[\prod_{D_{Foo}} DC \cdot \frac{\sum_{S_{D}} OQ(1-SPf)}{NsensorsD} \cdot \prod_{P_{Foo}} PA \cdot \frac{\sum_{S_{P}} OQ(1-SPf)}{NsensorP} \right] \cdot \left[\left(Pf \cdot S(CC+M) \cdot Pp \right) + \sum_{FM_{i+1}}^{FM_{i}} Rolled _Up \right] \right\}$$

$$Pf \cdot S(CC + M) \cdot Pp \cdot \left(\prod_{D_{\textit{Fob}}} \left(1 - \frac{\sum_{S_{\textit{Fob}}} \mathcal{OQ}}{NsensorsD} \right) \cdot DC \cdot \prod_{P_{\textit{Fob}}} \left(1 - \frac{\sum_{S_{\textit{Fob}}} \mathcal{OQ}}{NsensorsP} \right) \cdot PA \right)$$

What Prognostics can do for the Warfighter

- Accommodate Exigencies of Warfare
- Accommodate System Degradation
- Maximize System Operational Effectiveness

ام ما مام مدم مام ۱۸۷

- Web enabled
- Radio Frequency
- Infrared/Ultraviolet
- SATCOM
- Databurst Mayday (Black Box Data)

Maintenance Management

- Web Interfaces
- Maintainer Identification
- Automatic Record of repairs
- · Compatibility with legacy systems

Database Management

- Safety
- Mission Ops
- Rerouting based on Updated Threats
- Configuration Management
- Status Updates
- Schedule Adjustments
- General Maintenance Actions
- · Analyze Health of Aircraft Population
- Provide Interactive Electronic

Technical Manual (IETM) Knowledge

Automated Contingency Management

- Employ state-of-the-art computing, communications, and information technologies, in the presence of little or no human intervention to enhance mission effectiveness and survivability
- Automated mission capability updates provided to the aircrew and unit command when system performance degrades
- Various levels of command provided knowledge of the current and predicted capabilities across the population of systems operated
- Maintenance simplified and supply response time reduced
- Piece part reliability provided to OEM's to aid in effecting timely product improvement

